OPTICAL ROTATORY DISPERSION OF ANOMERIC NUCLEOSIDES.

T.L.V. Ulbricht, J.P. Jennings, Patricia M. Scopes and W. Klyne. Twyford Laboratories, London N.W.10, and Westfield College, Hampstead, London N.W.3.

(Received 11 February 1964)

A recent publication,² describing the O.R.D. curves of the four main natural β -deoxyribonucleotides, prompts us to report our own results in this field. Yang and Samejima² found that the β -deoxyribonucleotides showed Cotton effects in the region of 260 mµ; an important difference was observed between the pyrimidine and purine compounds, which showed positive and negative Cotton effects respectively.

We have measured 0.R.D. curves of a more extended range of nucleosides, which include three significant pairs of anomers. Our results parallel those of Yang and Sameji \pm for the 5'-phosphates; our results also bring out the important (and not unexpected) finding, that the members of an anomeric pair give curves of opposite sign. For the measurements below 300 mµ, only 0.05 mg. of compound was required; hence the anomeric configuration of a nucleoside can be determined on a very small sample.

Our results also show that the presence or absence of a 2-hydroxy group in the sugar moiety (ribose or 2-deoxyribose) makes no major difference to the curve. This point is of considerable interest in connection with Hudson's isorotation rules³, according to which the more dextrorotatory of a pair of anomeric-D-glycosides has the a-D-configuration. This is true of a wide variety of glycosides, including ribonucleosides, but does <u>not</u> apply to deoxyribonucleosides^{4,5}. It is therefore not possible to assign anomeric configuration to deoxyribonucleosides on the

695

Optical rotatory dispersion

basis of $[a]_D$ measurements. Our work shows that measurement of C.R.D. curves makes this possible; this is of particular importance since syntheses of deoxyribonucleosides from deoxyribosyl helides yield mixtures of the a- and β -anomers⁶.

Results are given in the Table which includes amplitudes for the curves measures by Yang and Samejima² (translated into molecular rotations for comparison).

Measurements were made at Westfield College with the Bellingham & Stanley/Bendix-Ericsson spectropolarimeter "Polarmatic 62^{m7} . Concentrations varied from <u>c</u>. = 0.1 to <u>c</u>. = 0.004, all rotations being determined in water at $18-22^{\circ}$ C. The wavelength range was from 500 mµ - 220 mµ, and values of molecular rotations have an accuracy of approximately 10^{r}_{r} . Optical densities were kept below 1.5 for most measurements, and the useful (non-stray) light transmission of the spectropolarimeter was continuously monitored during readings.

We thank the Department of Scientific and Industrial Research for a grant.

TABLE +

Molecular Rotations of Mucleosides (in water).

tr = trough : pk = peak

Amplitude a is (molecular rotation at first extremum minus molecular rotation at second extremum) divided by 100 (cf. ref.1). Pyrimidine Nucleosides Colecular Rotation Amplitude Anomeric Compound [\$] Configuration λ(mu) 8 Thymidine З 282 +1890 pk +95 -7590 tr 255 286 -3660 tr -104 α 252 +678C pk

696

Pyrimidine Nucleosides	Mo	Molecular Rotation		
Compound	Configuration	<u> </u>	ø	<u>a</u>
Uridine	β	279	+4100 pk	+117
		247	-7600 tr	
Cytidine	β	282	+7250 pk	+152
		244	-7 950 tr	
5-Fluorodeoxyuridine	β	281	+4350 pk	+120
		253	-7660 tr	
	a	286	-6300 tr	-159
		252	+9550 pk	
Deoxycytidine				
hydrochloride	β	290	+4+630 pk	+111
		266	-6500 tr	
Pyrimidine Nucleotides				
Thymidine-5'-mono- phosphate diammonium sa	lt β	280	+1670 pk	+71*
		250	-5460 tr	
Values calculated from	n figures in Ref.	.2		
Thymidine-5'-mono-				
phosphoric acid	β	290	+1000 pk	+19*
		249	-850 tr	
Deoxycytidine-5'-mono- phosphoric acid	β	290	+6750 pk	+124
		250	-5650 tr	
Purine Nucleosides				
Adenosine	β	270	-2310 tr	-58
		238	+ 3 450 pk	
Guanosine	β	294	-760 ; *	-
Inosine	β	253	-2490 tr	-59
		228	+3380 pk	

Purine Nucleosides		Molecular Rotation		
Compound	Anomeric Configuration	<u>λ(mμ</u>)	ø	<u>a</u>
Deoxyadencsine	β	286	-790 ; ‡	-
	a	271	+2700 pk	+80
		251	-5330 tr	
Deoxyguancsine	β	303	-800 1‡	-
Purine Nucleotides	(values calcula	ted from figures in	n Ref. 2)	
Deoxyadenosine-5'-n phosphoric acid	nono- β	290	-1090 tr	-27
		240	+1650 pk	
Deoxyguanosine-5'-m phosphoric acid	pono-β	290	- 1460 tr	-29
		230	+1460 pk	

* The reason for the discrepancy between these two values is not understood.
* Neither extremum of the Cotton Effect was reached, but this value (at the lowest wavelength measured) indicates the trend of the curve.

* Our thanks are due to Dr. M. Hoffer and to Dr. J.A. Carbon, for supplying samples of certain nucleosides.

References

- This paper is part VII in the Westfield College series on Optical Rotatory Dispersion. Preceding paper, part VI; Djerassi C., and Klyne W., <u>J. Chem. Soc</u>., 1963, 2390.
- 2. J.T. Yang and T. Samejima, <u>J. Am. Chem. Soc</u>. <u>85</u>, 4039 (1963).
- 3. C.S. Hudson, J. Am. Chem. Soc. 31, 66 (1909).
- 4. J.J. Fox, N.C. Yung, I. Wempen and M. Hoffer, <u>J. Am. Chem. Soc.</u> <u>83</u> 4066 (1961).
- 5. R.V. Lemieux and M. Hoffer, Can. J. Chem. 39, 110 (1961).
- T.L.V. Ulbricht, in <u>Comprehensive Biochemistry</u> Vol.8, ed. by M. Florkin and E.H. Stotz, Elsevier, 1963; <u>Angew. Chem</u>. (Int. Ed.), <u>1</u>, 476 (1962).
- Gillham E.J. and King R.J., <u>J. Sci. Instrum.</u>, 1961, <u>28</u>, 21; Jennings J.P., <u>Biochem. J.</u>, 1963, <u>86</u>, 16P.